79 research outputs found

    Decomposing responses to mobile notifications

    Get PDF
    Notifications from mobile devices frequently prompt us with information, either to merely inform us or to elicit a reaction. This has led to increasing research interest in considering an individual’s interruptibility prior to issuing notifications, in order for them to be positively received. To achieve this, predictive models need to be built from previous response behaviour where the individual’s interruptibility is known. However, there are several degrees of freedom in achieving this, from different definitions in what it means to be interruptible and a notification to be successful, to various methods for collecting data, and building predictive models. The primary focus of this thesis is to improve upon the typical convention used for labelling interruptibility, an area which has had limited direct attention. This includes the proposal of a flexible framework, called the decision-on-information-gain model, which passively observes response behaviour in order to support various interruptibility definitions. In contrast, previous studies have largely surrounded the investigation of influential contextual factors on predicting interruptibility, using a broad labelling convention that relies on notifications being responded to fully and potentially a survey needing to be completed. The approach is supported through two in-the-wild studies of Android notifications, one with 11,000 notifications across 90 users, and another with 32,000,000 across 3000 users. Analysis of these datasets shows that: a) responses to notifications is a decisionmaking process, whereby individuals can be reachable but not receptive to their content, supporting the premise of the approach; b) the approach is implementable on typical Android devices and capable of adapting to different notification designs and user preferences; and c) the different labels produced by the model are predictable using data sources that do not require invasive permissions or persistent background monitoring; however there are notable performance differences between different machine learning strategies for training and evaluation

    Reachable but not receptive: enhancing smartphone interruptibility prediction by modelling the extent of user engagement with notifications

    Get PDF
    Smartphone notifications frequently interrupt our daily lives, often at inopportune moments. We propose the decision-on-information-gain model, which extends the existing data collection convention to capture a range of interruptibility behaviour implicitly. Through a six-month in-the-wild study of 11,346 notifications, we find that this approach captures up to 125% more interruptibility cases. Secondly, we find different correlating contextual features for different behaviour using the approach and find that predictive models can be built with >80% precision for most users. However we note discrepancies in performance across labelling, training, and evaluation methods, creating design considerations for future systems

    Interruptibility prediction for ubiquitous systems: conventions and new directions from a growing field

    Get PDF
    When should a machine attempt to communicate with a user? This is a historical problem that has been studied since the rise of personal computing. More recently, the emergence of pervasive technologies such as the smartphone have extended the problem to be ever-present in our daily lives, opening up new opportunities for context awareness through data collection and reasoning. Complementary to this there has been increasing interest in techniques to intelligently synchronise interruptions with human behaviour and cognition. However, it is increasingly challenging to categorise new developments, which are often scenario specific or scope a problem with particular unique features. In this paper we present a meta-analysis of this area, decomposing and comparing historical and recent works that seek to understand and predict how users will perceive and respond to interruptions. In doing so we identify research gaps, questions and opportunities that characterise this important emerging field for pervasive technology

    Push or delay? Decomposing Smartphone notification response behaviour

    Get PDF
    Smartphone notifications are often delivered without considering user interruptibility, potentially causing frustration for the recipient. Therefore research in this area has concerned finding contexts where interruptions are better received. The typical convention for monitoring interruption behaviour assumes binary actions, where a response is either completed or not at all. However, in reality a user may partially respond to an interruption, such as reacting to an audible alert or exploring which application caused it. Consequently we present a multi-step model of interruptibility that allows assessment of both partial and complete notification responses. Through a 6-month in-the-wild case study of 11,346 to-do list reminders from 93 users, we find support for reducing false-negative classification of interruptibility. Additionally, we find that different response behaviour is correlated with different contexts and that these behaviours are predictable with similar accuracy to complete responses

    Evidence to support common application switching behaviour on smartphones

    Get PDF
    We find evidence to support common behaviour in smartphone usage based on analysis of application (app) switching. This is an overlooked aspect of smartphone usage that gives additional insight beyond screen time and the particular apps that are accessed. Using a dataset of usage behaviour from 53 participants over a six-week period, we find strong similarity in the structure of networks built from app switching, despite diversity in the apps used, and the volume of app switching. App switch networks exhibit small-world, broad-scale network features, with a rapid popularity decay, suggesting that preferential attachment may drive next-app decision-making

    Breadth verses depth: the impact of tree structure on cultural influence

    Get PDF
    Cultural spread in social networks and organisations is an important and longstanding issue. In this paper we assess this role of tree structures in facilitating cultural diversity. Cultural features are represented using abstract traits that are held by individual agents, which may transfer when neighbouring agents interact through the network structure. We use an agent-based model that incorporates both the combined social pressure and influence from an agent's neighbours. We perform a multivariate study where the number of features and traits representing culture are varied, alongside the breadth and depth of the tree. The results reveal interesting findings on cultural diversity. Increasing the number of features promotes strong convergence in flatter trees as compared to narrower and deeper trees. At the same time increasing features causes narrower deeper trees to show greater cultural pluralism while flatter trees instead show greater cultural homogenisation. We also find that in contrast to previous work, the polarisation between nodes does not rise steadily as the number of traits increase but under certain conditions may also fall. The results have implications for organisational structures - in particular for hierarchies where depth supports cultural divergence, while breadth promotes greater homogeneity, but with increased coordination overhead on the root nodes. These observations also support subsidiarity in deep organisational structures - it is not just a case of communication length promoting subsidiarity, but local cultural differences are more likely to be sustained within these structures
    • …
    corecore